If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+27t=0
a = -4.9; b = 27; c = 0;
Δ = b2-4ac
Δ = 272-4·(-4.9)·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-27}{2*-4.9}=\frac{-54}{-9.8} =5+5/9.8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+27}{2*-4.9}=\frac{0}{-9.8} =0 $
| 0.6t=8 | | 2x-4(-6x+8)=228 | | -102=-6x+7(x-13) | | 7x+2(-3x+9)=28 | | m/14=10 | | 4t−5=7 | | 15−3m=9 | | 4u+12=20 | | 16−2s=4 | | 2x+(x-4)/4=10 | | -4t-2=10 | | 500+1/6x=300 | | 8+c/6=-6 | | a-17=-20 | | 85+n/4=61 | | 5r+6=27 | | 12y=(8×-48)÷3 | | 209=k/41.71 | | z/2+5=-49 | | -8x+3(x-2)=-26 | | z/8+2=75 | | 209=69.67/x | | 209=k/3 | | k/6+8=19 | | (x+4)/3+x=5x | | 4(-6x-5)=-44 | | 10c=13.17 | | -6a-15=-3(a-) | | z+108=180 | | 3+x/7=-2 | | -6(2x+5)=66 | | 30x^2+30=-229 |